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Abstract 

Grid computing provides key infrastructure for distributed 
problem solving in dynamic virtual organizations.  It has 
been adopted by many scientific projects, and industrial 
interest is rising rapidly.  However, Grids are still the 
domain of a few highly trained programmers with expertise 
in networking, high-performance computing, and operating 
systems.  This paper describes our initial work in capturing 
knowledge and heuristics about how to select application 
components and computing resources, and using that 
knowledge to generate automatically executable job 
workflows for the Grid.  Our system is implemented and 
integrated with a Grid environment where it has generated 
dozens of workflows with hundreds of jobs in real time.  
The paper also discusses the prospects of using AI to 
improve current Grid infrastructure. 

Introduction   
Once the realm of high-performance computing for 
scientific applications, Grid computing is arising as key 
enabling infrastructure for resource sharing and 
coordinated problem solving in dynamic multi-institutional 
virtual organizations (Foster et al. 01).  Grids build over 
networking technology to provide middleware components 
such as locating files over a network of computers, 
scheduling the distributed execution of jobs, and managing 
resource sharing and access policies (Foster and 
Kesselman 99).  The need of scientific communities to 
interconnect applications, data, expertise, and computing 
resources is shared by other application areas, such as 
business, government, medical care, and education (Foster 
et al. 02, Waldrop 03).  Although other technologies such 
as semantic markup languages and web services offer 
critical technologies for virtual organizations (Berners-Lee 
et al. 01), only Grids put forward a solution for how to 
manage the myriad of computing jobs that will arise if 
such technologies become commonplace. 
 
Unfortunately, Grid computing is today far from reach 
from regular computer users.  Users interact with Grids by 
sending a specification in the form of a detailed executable 
script of which jobs should be run on which computers 
using which physical files and sometimes the specific 
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scheduler in the host computer where jobs are to be 
submitted for execution.  We believe that this need not be 
so. Our work aims to develop intelligent middleware 
components that encapsulate the expertise required to use 
Grids.  In (Blythe et al. 03), we outline the use of AI 
planning techniques to automatically generate executable 
job workflows from high-level specifications of desired 
results.   
 
In this paper, we describe in detail the different types of 
knowledge and heuristics that are represented and used in 
the system, and how the planner is integrated within the 
Grid environment to extract relevant knowledge from 
existing Grid middleware. One of the applications where 
we have used this approach is the Laser Interferometer 
Gravitational Wave Observatory (LIGO, 
www.ligo.caltech.edu) aimed at detecting gravitational 
waves predicted by Einstein's theory of relativity. The 
planner can be given the high-level goal of making a 
pulsar search in certain areas of the sky for a time period. 
During a live demonstration at the 2002 Super Computing 
conference it was used to generate workflows for 58 pulsar 
searches, scheduling over 330 jobs and over 460 data 
transfers, consuming over eleven CPU hours on resources 
distributed over the Grid. 
 
We start outlining some of the challenges of using the Grid 
today and the benefits of our approach.  We then show the 
kinds of knowledge available in current Grid infrastructure 
and capabilities using as an example the specific Grid 
environment we used for the LIGO application.  We 
describe the system that we have developed, how it 
extracts the knowledge available in the current Grid and 
uses it to generate complete executable workflows, and 
how the workflows are translated into the scripting 
language required by the Grid environment.  We finalize 
with a discussion of our future work and the potential of 
AI technology for Grid computing.  

Motivation 
Scientists often seek specific data products, which can be 
obtained by configuring available application components 
and executing them on the Grid.  As an example, suppose 
that the user’s goal is to obtain a frequency spectrum of a 
signal S from instrument Y and time frame X, placing the 
results in location L.  In addition to these stated desired 
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results, the user may have additional requirements on 
intermediate steps.  For example, the user may want the 
results of any intermediate filtering steps to be available in 
location I, perhaps to examine the filter results to check for 
unusual phenomena.  
 
Today, users have to transform this kind of high-level 
requirement into a workflow of jobs that can be submitted 
for execution on the Grid.  Each job must specify which 
files contain the code to be run, selected by mapping the 
high level requirements above to available application 
components (e.g., a Fast Fourier Transform coded by 
Caltech’s group, version 3.0 or higher) and selecting a 
physical file from the many available replicas of the code 
in various locations.  The job also specifies the location (or 
host) where it should be run, based on the code 
requirements (e.g., code is compiled for MPI, parallelized 
to run on tightly-coupled architecture, preferably with 
more than 5 nodes) and on user access policies to 
computing and storage resources.  An executable 
workflow also includes jobs to move input data and 
application component files to the execution location. 
 
Although Grid middleware allows for discovery of the 
available resources and of the locations of the replicated 
data, users are currently responsible for carrying out all of 
these steps manually. There are several reasons why 
automating this process is not only desirable but necessary: 
 

1. Usability: Users are required to have extensive 
knowledge of the Grid computing environment and 
its middleware functions.  For example, the user 
needs to query the Replica Location Service (RLS) 
(Chervenak et al. 02a) to find the physical locations 
of input data files.  Users also need to understand 
that different types of job schedulers may run on the 
same host, each one being more appropriate for 
certain types of jobs.  Access policies need to be 
consulted in order to assign valid resources in a 
user’s workflow. 

2. Complexity: In addition to requiring scientists to 
become Grid-enabled users, the process may be 
complex and time consuming.  Notice that the user 
must make many choices when alternative 
application components, files, or locations are 
available.  The user may reach a dead end where no 
solution can be found, which would require 
backtracking to undo some previous choice.  Many 
different interdependencies may occur among 
components, and as a result it may be even hard to 
determine which choice to change and what would 
be a better option that leads to a feasible solution. 

3. Solution cost:  Lower cost solutions are highly 
desirable in light of the high cost of some of the 
computations and the user’s limitations in terms of 
resource access.  Bandwidth and memory available 
to handle data file transfers and processing may 
make some computations impractically slow.  
Because finding any feasible solution is already 

time consuming, users are unlikely to explore 
alternative workflows that may reduce execution 
cost. 

4. Global cost:  Because many users are competing 
for resources, it is desirable to minimize cost within 
a community or a virtual organization (VO), a 
group of users pursuing common goals (Foster et al. 
01).  This requires reasoning about individual user’s 
choices in light of other user’s choices, such as 
possible common jobs that could be included across 
workflows and executed only once. In addition, 
there are many policies that limit user’s access to 
resources, and that should be taken into account in 
order to accommodate as many users as possible 
while they are contending for limited resources.   

5. Reliability of execution: In today’s Grid 
framework, when the execution of a job fails the job 
is resubmitted for execution on the same resources.  
Better recovery mechanisms would be desirable that 
take into account the dynamic situation of the 
environment, including assignment of alternative 
resources and components.  Moreover, if any job 
fails repeatedly the system should learn and 
incorporate this knowledge in future situations.  

While addressing the first three points would enable wider 
accessibility of the Grid to users, the latter two simply 
cannot be handled by individual users and will likely need 
to be addressed at the architecture level.  
 
Our approach is twofold.  First, we use declarative 
representations of knowledge involved in each choice of 
the workflow generation process.  This includes 
knowledge about how application components work, 
characteristics and availability of files, capabilities of the 
resources available, access control policies, etc.  Second, 
this knowledge is uniformly available to the system at any 
point during workflow generation.  This allows the system 
to make decisions and assignments in a flexible manner 
that 

• takes into account previous and future choices, 
searching for a low-cost workflow configuration 
that satisfies the requirements from the user,  

• is feasible in the given execution environment, and  
• can adapt to changes in the overall system state. 

 
Figure 1 illustrates our approach.  Users provide high level 
specifications of desired results, as well as constraints on 
the components and resources to be used.  These requests 
and preferences are represented in the knowledge base.  
The Grid environment contains middleware to find 
components that can generate desired results, the input 
data that they require, to find replicas of component files in 
specific locations, to match component requirements with 
resources available, etc.  The knowledge currently used by 
Grid middleware (resource descriptions, metadata catalogs 
to describe file contents, user access rights and use 
policies, etc) would also be incorporated in the knowledge 
base.  The system would generate workflows that have 
executable portions and partially specified portions, and 



iteratively add details to the workflow based on the 
execution of the initial portions of it and the current state 
of the execution environment. 
 

Much knowledge concerning descriptions of components, 
resources and the system’s state is available from a variety 
of Grid middleware, as we describe in the next section.  
However, one must be an experienced Grid user to run 
jobs on the Grid, which means that much additional 
knowledge needs to be represented about what terms mean 
and how they related to one another.  For example, an 
application component may be available in a file where it 
has been compiled for MPI.  MPI is a Message Passing 
Interface, which means that the source includes calls to 
MPI libraries that will need to be available in the host 
computer where the code is to be run.  Even a simple piece 
of Java code implies requirements in the execution host, 
namely that the host can run JVM (Java Virtual Machine).  

Our contribution is to organize this knowledge and reason 
about it within a uniform framework. 
 
 

 
 

Overview of the Grid environment 
 
Grid environments, such as Globus (Globus 02), include 
middleware services that enable users to obtain 
information about the resources available, component 
software, data files, and the execution environment.  This 
section describes several of these services, which we have 
used as sources of knowledge for our system. More details 
can be found in (Deelman et al 03a; Deelman et al 03b). 
 

 

Resource 
locator 

Replica 
location

Component 
and data catalog

Desired contents 
of file

Physical  file  
names & 
locations

Computing and  
memory resources 

Resource  
requirements 

Logical file 
names

Job 
scheduling

Execution 
monitoring 

Grid 

User access 
rights

Policies of 
resource use

Resource
descriptions

Metadata
file descriptions

fi fn 

c1 
f1 

f2 

f4 

High - level specs of desired  
results (fn) and intermediate  
data products

Preferences and 
constraints on 
component/file and 
resource selection

Knowledge base  
descriptions  

and heuristics 

Intelligent Workflow Generation Intelligent Workflow Generation 

Component  
selection 

Resource 
reasoning Policies 

Grid execution environment 

c3
f3 

c2 c4
f5

fnfi 

Partially specified workflow

Resource 
locator 

Replica 
location

Component 
and data catalog

Desired contents 
of file

Physical  file  
names & 
locations

Computing and  
memory resources 

Resource  
requirements 

Logical file 
names

Job 
scheduling

Execution 
monitoring 

Grid 

User access 
rights

Policies of 
resource use

Resource
descriptions

Metadata
file descriptions

fi fn 

c1 
f1 

f2 

f4 

High - level specs of desired  
results (fn) and intermediate  
data products

Preferences and 
constraints on 
component/file and 
resource selection

Knowledge base  
descriptions  

and heuristics 

Intelligent Workflow Generation Intelligent Workflow Generation 

Component  
selection 

Resource 
reasoning Policies 

Grid execution environment 

c3
f3 

c2 c4
f5

fnfi 

Partially specified workflow

 
Figure 1: Application development in the Grid Environment. 
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Figure 2: The path of computations required for a pulsar 
search. 

In Grid environments, an application component (e.g., a 
Fast Fourier Transform or FFT) can be implemented in 
different source files, each compiled to run in a different 
type of target architecture.  Exact replicas of the executable 
file can be stored in many locations, which helps reduce 
execution time.  Data files can also be replicated in various 
locations.  Each file has a description of its contents in 
terms of application-specific metadata.  A distinction is 
made between “logical” file descriptions, which uniquely 
identify the application component or data, and “physical” 
file descriptions, which in addition uniquely specify the 
location and name of a specific file.  The Metadata 
Catalog Service (MCS) (Chervenak et al. 02b) responds to 
queries based on application-specific metadata and returns 
the logical names of files containing the required data, if 
they already exist. Given a logical file name that uniquely 
identifies a file without specifying a location, the Replica 
Location Service (RLS) (Chervenak et al. 02a) can be used 
to find physical locations for the file on the Grid.  
 
The Grid execution environment includes computing and 
storage resources with diverse capabilities.  A specific 
application may require (possibly indicated in its metadata 
description) a certain type of resource for execution, for 
example the existence of certain number of nodes to 
efficiently parallelize its execution. Executing applications 
with minimal overhead may require specifying which of 
the job queues available in the host is more appropriate.  
The Monitoring and Discovery service (MDS) (Czajkowski 
et al 01) allows the discovery and monitoring of resources 
on the Grid.  Resource matchmakers find resources 
appropriate to the requirements of application components.  
 
Jobs that are completely specified for execution are sent to 
schedulers that manage the resources and monitor 
execution progress.  Condor-G and DAGMan (Frey et al. 
01) can be used to request a task to be executed on a 
resource. Condor-G adds an individual task to a resource’s 
queue, while DAGMan can manage the execution of a 
partially-ordered workflow by waiting for a task’s parents 
to be completed before scheduling a task. 
 
Given that the planning system decides for the user where 
to generate the data and what software and input files to 
use, it is very important to provide the user and others 
accessing this derived data with its provenance 
information, or how the data arrived at its current form. To 
achieve this, we have integrated our system with the 
Chimera Virtual Data System (Annis et al. 02). Our system 
generates a Virtual Data Language description of the 
products produced in the workflow. Chimera uses this 
description to populate its database with the relevant 
provenance information. 

Scenario: LIGO pulsar search 
 
Our techniques are general, but we have applied them in 
the context of the Laser Interferometer Gravitational Wave 

Observatory (LIGO), and we use this application to 
illustrate the work. We have focused on a specific LIGO 
problem: pulsar search, shown in Figure 2, where Grid 
resources are required to search for evidence of 
gravitational waves possibly emitted by pulsars. The data 
needed to conduct the search is a long sequence (~4 
months, 2x1011 points) of a single channel—the 
gravitational wave strain channel observed at the LIGO 
instrument.  The output from the observatory is in small 
segments of many channels that are stacked to make a 
large frequency-time image, perhaps 4x105 on each side. 
The pulsar search looks for coherent signals in this image. 
 
The pulsar search is both computation and data intensive 
and requires more resources than those available within the 
LIGO Scientific Collaboration. In order to take advantage 
of the Grid resources, LIGO’s existing analysis tools were 
integrated into the Grid environment. The pulsar search 
conducted at SC 2002 used LIGO’s data collected during 
the first scientific run of the instrument and targeted a set 
of 1000 locations of known pulsars as well as random 
locations in the sky. The results of the analysis were made 
available to LIGO scientists through the Grid. 
 

Modeling the task as a planning problem 
The problem of assigning a set of coordinated tasks in a 
workflow and allocating the tasks to available resources is 
formulated as an AI planning problem as follows. Each 
application component that may take part in the workflow 
is modeled as a planning operator. The effects and 
preconditions of the operators reflect two sources of 
information: data dependencies between the program 
inputs and outputs, and resource constraints on the 
programs, both hardware and software required to run 
them. 
 



The planner imposes a partial order on the tasks that is 
sufficient for execution because it models their input and 
output data dependencies: if the prerequisites of a task are 
completed before the task is scheduled, then the 
information required to run the associated program will be 
available. Transferring files across the network is also 
modeled with a planning operator, so any data movement 
required is accounted for. The data dependencies between 
tasks are modeled both in terms of metadata descriptions of 
the information and in terms of files used to represent the 
data in the system. Metadata descriptions, for example a 
first-order logic predicate that denotes the result of a pulsar 
search in a fixed point in the sky across a fixed range of 
frequencies and at a fixed time, allow the user to specify 
requests for information without specific knowledge of 
programs or file systems, with the planner filling in the 
details of the request. Since the operators also model the 
files that are created and used by a program, the planner 
knows how the information is accessed and stored. It can 
then reason about how tasks can share information, and 
plan for moving information about the network. The 
planner’s representation of information and files is kept up 
to date with the state of the Grid, so that its plans are both 
efficient and directly executable, as we describe below. 
 
 The planning operators also model constraints on the 
resources required to perform the desired operations. 
Hardware constraints may include a particular machine 
type, minimum physical memory or hard disk space 
available, or the presence of a certain number of nodes in a 
distributed-memory cluster. Software constraints may 
include the operating system and version, the presence of 
scheduling software on the host machine and the presence 
of support environments, for example to run Java. In our 
work on the LIGO scenario, it was sufficient to model 
requirements on the scheduling software present, because 
of the close relationship between the software and the 
hardware configurations of the machines involved. More 
recently, we have described different hardware 
requirements on operators using the CIM model (CIM, 02). 
The initial state given as input to the planner captures 
information from several sources: 
1. Hardware resources available to the user described using 
the CIM ontology, and estimates of bandwidths between 
the resources. 
2. Relevant data files that have already been created and 
their locations. 
Our aim is for this information to be extracted 
automatically. At present, some is automatically extracted 
and some is hand-coded. We give further details below.  
The goal given to the planner usually represents a meta-
data request for information and a location on the network 
where the data should be available. If there is a preference, 
the goals can also be used to specify programs or host 
machines to be used, for intermediate or final steps. 
In addition to operators, an initial state and goals, our 
implemented workflow planner also uses search control 
rules, to help it quickly find good solutions based on 
preferences for resources and component operators, and to 

help it search the space of all plans more efficiently in 
order to find high-quality plans given more search time. 
For more details on the planning domain specification and 
its implementation using Prodigy (Veloso et al. 95), see 
(Blythe et al. 03). 
We now describe the implementation of our planning-
based solution in more detail. The use of the planner can 
be divided into three phases which we describe below: 
preparing the input problem specification for the planner, 
practical considerations for using AI planning in this 
problem domain, and interpreting the output plan as an 
executable workflow. 

Integration with the Grid environment 
Two modules shown in Figure 3 provide input for the 
planner: the Current State Generator, which produces the 
initial state description, and the Request Manager, which 
produces the goal description from a user request. The 
Current State Generator makes use of two tools that have 
been independently built for the Grid: the Metadata 
Catalog Service and the Replica Location Service. 
Given knowledge of which data products already exist and 
where they are located, the planner can choose whether to 
transfer existing data across the network or re-create it 
closer to the point where it is needed. This choice is made 
either by search control heuristics or by simulating a 
number of plans and picking the one with the best 
expected run time. 
An important design decision in our current 
implementation was whether to encode information about 
all possible required data products in the initial state before 
planning begins, or allow the planner to query for the 
existence of data products while planning. Although the 
planner is capable of making the queries, we chose to 
gather the information before planning because the 
potentially large number of queries about files can then be 
combined, reducing bandwidth and the load on the MCS 
and RLS. The data products to be queried are decided by 
the Current State Generator based on the goal description. 
This could be done through a static analysis of the 
planning operators, but is currently hard-coded. 
Once the file information is retrieved, it is sent to the AI 
planner, along with the goal from the Request Manager. 
The planner merges this information with a static file 
describing available resources to create the final initial 
state and goals used for planning.  Our aim in the near 
future is to use the Globus Monitoring and Discovery 
Service to retrieve information about computer hosts, 
rather than use a static file, and also to use the Network 
Weather Service (Wolski 97) to retrieve timely 
information about bandwidth estimates between resources. 
We also intend to use a metadata service to retrieve 
information about Grid users including their preferences 
and their access to resources.  
The planning operators are stored separately. We are 
currently investigating ways to generate the operators from 
metadata and resource information about the application 
components. 
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Figure 3: Architecture of the planning system and its 
interactions with other Grid-based services. 
 

Practical issues in using an AI planner 
 
As we have argued, AI planning is an appropriate tool for 
constructing workflows because it allows a declarative 
representation of workflow components with separate 
search regimes. Heuristic control for constructing good 
workflows or evenly sampling the set of possible 
workflows can also be modeled declaratively. In order to 
make the most efficient use of AI planning, it was 
necessary to integrate the planner with specialized sub-
solvers that were more efficient for certain sub-problems. 
Similar approaches have been taken to integrate AI 
planning with scheduling systems (Myers et al. 01). 
 
In this case, a user request for a pulsar search might lead 
the planner to schedule up to 400 separate short Fourier 
transform (SFT) tasks on the available machines. These 
tasks are identical except for their input parameters, are 
independent of one another and all need to be completed 
before a concatenation task is applied to their results: a 
situation sometimes called ‘parameter sweep’. It is more 
efficient for the planner to consider the separate instances 
of the SFT program running on one host as a single 
instance, and use a separate routine to assign the SFT 

instances to the available hosts. This routine balances the 
workload while taking into account the availability of any 
already existing input files on the Grid. For the planner, 
reasoning at this slightly higher level of abstraction 
required re-formulating the operator for the SFT from one 
that models single instances of the program into one that 
models multiple instances. This was done by hand but we 
plan to automate the process, since this situation is 
common. 
 
In the LIGO application, the planner returned the first plan 
generated, using local heuristics aimed at generating a plan 
with low expected run-time. The planner can also be used 
to evaluate all possible plans and return one with the 
lowest run-time according to its estimates, or as an anytime 
algorithm, searching for better plans and returning the best 
found when queried. To make the estimates, a routine is 
attached to each operator to estimate its run-time as a 
function of its input data and the chosen host. The local 
estimates are combined into an estimate for the whole plan 
based on the partial order of tasks. In principle the 
estimates can also be used with partial plans in order to 
perform an A* search for the best plan, but this is not 
currently implemented. 

Executing the plan on the grid 
 
Once the plan is completed, it is sent to the Request 
Manager as a partially-ordered set of tasks. Any tasks that 
are combined in the planner, for example the SFT 
construction tasks in the LIGO scenario, are represented 
separately. The partial order is used to oversee the 
execution of the plan as a workflow on the Grid, but two 
steps must first be taken to complete the workflow. 
  
The plan includes steps to create any needed data products, 
and these will be stored in files on the Grid. Within the 
plan, these data products are referred to by their metadata 
descriptions, and another set of queries to the Metadata 
Catalog Service is made to create the appropriate logical 
file names and enter their associated metadata attributes. 
These files will be created on the host machines where the 
programs are to be run, but some of them may need to be 
moved to other storage machines for long-term availability 
and registered to services like the Replica Location Service 
so they can be found and re-used in future requests, if the 
user so chooses. The Request Manager adds the necessary 
steps to the workflow to store and register these files. 
  
The completed workflow is then submitted to DAGMan 
for execution. DAGMan keeps track of task dependencies, 
and schedules each task on the required machine when the 
parent tasks have completed. 
 



Experiences with the planner 
 
The planning system described above was shown at the 
Super Computing conference SC ’02 in November, where 
it was used to create and execute workflows in the pulsar 
search domain, using approximately ten machines and 
clusters of different architectures and computing and 
storage resources at Caltech, the University of Southern 
California and the University of Wisconsin, Milwaukee. 
During the conference it was used to perform 58 pulsar 
searches, scheduling over 330 tasks and over 460 data 
transfers, consuming over eleven hours of runtime on high 
performance computing resources from several 
organizations. Since then the system was used to generate 
additional workloads that resulted in 185 pulsar searches, 
975 tasks being executed and 1365 data files transferred. 
The total runtime was close to 100 hours. 
Due to the interest from the physics-based user 
community, the demonstrators were asked at the 
conference if they could include an alternative algorithm 
for the pulsar search task that used different resource 
types, routines and support files. Although the authors of 
the planning domain were not present, it was possible for 
them to define additional planning operators for these 
routines and describe the new hosts in the resource file. 
The system was then able to create and execute workflows 
using either the original or the new algorithm, and could 
choose the most appropriate one depending on the 
availability of hosts or data products. Our collaborators 
from the LIGO project expressed great interest in this work 
and we aim for this initial implementation to become the 
foundation of a system with which they can perform 
production-level analysis. 
 
Related Work 
 
AI planning has been used to compose component 
programs for image processing to achieve an overall goal 
(Lansky et al. 95, Chien and Mortensen 96). These systems 
face similar issues in modeling components for planners, 
but do not handle distributed resources on a network, or 
attempt to improve plan runtime. McDermott (02) applies 
planning to the problem of web service composition, 
which shares with this domain the problem of composing 
software components in a distributed environment where 
many components are not directly under the planner's 
control although the work does not address resource 
requirements and use.  Other projects use knowledge bases 
to facilitate the use of the Grid.  The MyGrid project 
(Wroe et al. 03) uses DAML+OIL (Horrocks 02) and 
DAML-S (Ankolekar et al. 01) to describe application 
components as semantic web services.  These descriptions 
are used to support matching and discovery of components 
through a description logic reasoner.  Our work is 
complementary in that it uses the descriptions of the 
components to generate end-to-end workflows.  

Future work 
Our initial steps developing this application have shown 
the usefulness of a planning approach to workflow 
construction, and of declarative representations of 
knowledge uniformly available in the Grid. We have also 
identified a number of issues that we will explore in our 
future work in this area. 
Reasoning about entire workflows allows us to find a 
globally optimal solution that may not be possible if we 
seek a locally optimal allocation for each component task. 
However, a relatively long-term plan may be far from 
optimal or unachievable in practice because the 
computational environment can change rapidly while the 
plan is executed. Scheduling of tasks may simply fail, and 
resources may become unavailable or be swamped when 
needed, bandwidth conditions may change and new data 
may render some later steps pointless.  
We intend to incorporate Grid monitoring services in our 
framework to continually monitor the environment as the 
plan is executed, and repair or recompute the plan if 
needed. We will initially exploit the fact that plan creation 
in this domain is fast compared with execution, so one can 
continually re-plan as the situation changes, and always 
schedule the next task from the latest available plan. Other 
strategies for plan monitoring, re-planning and reactive 
planning are also applicable, as are strategies to predict and 
avoid likely sources of failure (Boutilier et al. 98). 

Wider uses of knowledge in the Grid 
 
By incorporating more sources of useful knowledge in the 
Grid environment and by making use of this knowledge in 
more places in the Grid, we plan to further improve both 
the accessibility and the robustness of Grid applications. 
For example, this work shows how explicit knowledge 
about tasks and their purposes and constraints can be used 
to construct workflows that are more efficient and reliable. 
By making the knowledge about tasks more modular and 
declarative, for example using ontologies of resources and 
metadata, the process of operator construction and 
modification can be made simpler and less error-prone. 
Currently, knowledge about user preferences and policies 
for access to resources is not explicitly represented in the 
Grid, and this information would enable automated 
construction of workflows in more general situations and 
more general reasoning about the quality of alternative 
workflows. 
Our goal of an accessible Grid that uses widely available 
knowledge and can automate more tasks will only be 
successful if users can express a variety of information 
about their tasks and can control individual processes 
when they want to. Interfaces to help users understand the 
current state of workflows that interest them and to 
describe their requests, preferences and constraints to the 
system are also important to the approach. 



Conclusions 
Our initial work in applying knowledge-based techniques 
to make Grid computing more transparent and accessible 
has led to interesting results and an encouraging response 
from the user community. In addition to considering the 
challenges listed above, we are currently testing the 
generality of the approach by developing applications for 
high-energy physics and with earthquake simulations for 
the Southern California Earthquake Center 
(http://www.isi.edu/ikcap/scec-it/).  If successful, this 
approach will be of significant help in bringing the benefits 
of Grid-based computing to a much wider base of users. 
Many additional AI techniques will be useful towards this 
goal, including scheduling and resource reasoning, 
ontologies and description logic reasoning, multi-agent 
systems, and reasoning about uncertainty. 
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