
Transparent Grid Computing: a Knowledge-Based Approach
Jim Blythe, Ewa Deelman, Yolanda Gil, Carl Kesselman

USC Information Sciences Institute
4676 Admiralty Way, Suite 1001

Marina Del Rey, CA 90292
{blythe, deelman, gil, carl}@isi.edu

Abstract

Grid computing provides key infrastructure for distributed
problem solving in dynamic virtual organizations. It has
been adopted by many scientific projects, and industrial
interest is rising rapidly. However, Grids are still the
domain of a few highly trained programmers with expertise
in networking, high-performance computing, and operating
systems. This paper describes our initial work in capturing
knowledge and heuristics about how to select application
components and computing resources, and using that
knowledge to generate automatically executable job
workflows for the Grid. Our system is implemented and
integrated with a Grid environment where it has generated
dozens of workflows with hundreds of jobs in real time.
The paper also discusses the prospects of using AI to
improve current Grid infrastructure.

Introduction
Once the realm of high-performance computing for
scientific applications, Grid computing is arising as key
enabling infrastructure for resource sharing and
coordinated problem solving in dynamic multi-institutional
virtual organizations (Foster et al. 01). Grids build over
networking technology to provide middleware components
such as locating files over a network of computers,
scheduling the distributed execution of jobs, and managing
resource sharing and access policies (Foster and
Kesselman 99). The need of scientific communities to
interconnect applications, data, expertise, and computing
resources is shared by other application areas, such as
business, government, medical care, and education (Foster
et al. 02, Waldrop 03). Although other technologies such
as semantic markup languages and web services offer
critical technologies for virtual organizations (Berners-Lee
et al. 01), only Grids put forward a solution for how to
manage the myriad of computing jobs that will arise if
such technologies become commonplace.

Unfortunately, Grid computing is today far from reach
from regular computer users. Users interact with Grids by
sending a specification in the form of a detailed executable
script of which jobs should be run on which computers
using which physical files and sometimes the specific

Copyright © 2003, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

scheduler in the host computer where jobs are to be
submitted for execution. We believe that this need not be
so. Our work aims to develop intelligent middleware
components that encapsulate the expertise required to use
Grids. In (Blythe et al. 03), we outline the use of AI
planning techniques to automatically generate executable
job workflows from high-level specifications of desired
results.

In this paper, we describe in detail the different types of
knowledge and heuristics that are represented and used in
the system, and how the planner is integrated within the
Grid environment to extract relevant knowledge from
existing Grid middleware. One of the applications where
we have used this approach is the Laser Interferometer
Gravitational Wave Observatory (LIGO,
www.ligo.caltech.edu) aimed at detecting gravitational
waves predicted by Einstein's theory of relativity. The
planner can be given the high-level goal of making a
pulsar search in certain areas of the sky for a time period.
During a live demonstration at the 2002 Super Computing
conference it was used to generate workflows for 58 pulsar
searches, scheduling over 330 jobs and over 460 data
transfers, consuming over eleven CPU hours on resources
distributed over the Grid.

We start outlining some of the challenges of using the Grid
today and the benefits of our approach. We then show the
kinds of knowledge available in current Grid infrastructure
and capabilities using as an example the specific Grid
environment we used for the LIGO application. We
describe the system that we have developed, how it
extracts the knowledge available in the current Grid and
uses it to generate complete executable workflows, and
how the workflows are translated into the scripting
language required by the Grid environment. We finalize
with a discussion of our future work and the potential of
AI technology for Grid computing.

Motivation
Scientists often seek specific data products, which can be
obtained by configuring available application components
and executing them on the Grid. As an example, suppose
that the user’s goal is to obtain a frequency spectrum of a
signal S from instrument Y and time frame X, placing the
results in location L. In addition to these stated desired

To appear, Fifteenth Innovative Applications of Artificial Intelligence Conference (IAAI-03), Acapulco, August 12-14 2003

results, the user may have additional requirements on
intermediate steps. For example, the user may want the
results of any intermediate filtering steps to be available in
location I, perhaps to examine the filter results to check for
unusual phenomena.

Today, users have to transform this kind of high-level
requirement into a workflow of jobs that can be submitted
for execution on the Grid. Each job must specify which
files contain the code to be run, selected by mapping the
high level requirements above to available application
components (e.g., a Fast Fourier Transform coded by
Caltech’s group, version 3.0 or higher) and selecting a
physical file from the many available replicas of the code
in various locations. The job also specifies the location (or
host) where it should be run, based on the code
requirements (e.g., code is compiled for MPI, parallelized
to run on tightly-coupled architecture, preferably with
more than 5 nodes) and on user access policies to
computing and storage resources. An executable
workflow also includes jobs to move input data and
application component files to the execution location.

Although Grid middleware allows for discovery of the
available resources and of the locations of the replicated
data, users are currently responsible for carrying out all of
these steps manually. There are several reasons why
automating this process is not only desirable but necessary:

1. Usability: Users are required to have extensive
knowledge of the Grid computing environment and
its middleware functions. For example, the user
needs to query the Replica Location Service (RLS)
(Chervenak et al. 02a) to find the physical locations
of input data files. Users also need to understand
that different types of job schedulers may run on the
same host, each one being more appropriate for
certain types of jobs. Access policies need to be
consulted in order to assign valid resources in a
user’s workflow.

2. Complexity: In addition to requiring scientists to
become Grid-enabled users, the process may be
complex and time consuming. Notice that the user
must make many choices when alternative
application components, files, or locations are
available. The user may reach a dead end where no
solution can be found, which would require
backtracking to undo some previous choice. Many
different interdependencies may occur among
components, and as a result it may be even hard to
determine which choice to change and what would
be a better option that leads to a feasible solution.

3. Solution cost: Lower cost solutions are highly
desirable in light of the high cost of some of the
computations and the user’s limitations in terms of
resource access. Bandwidth and memory available
to handle data file transfers and processing may
make some computations impractically slow.
Because finding any feasible solution is already

time consuming, users are unlikely to explore
alternative workflows that may reduce execution
cost.

4. Global cost: Because many users are competing
for resources, it is desirable to minimize cost within
a community or a virtual organization (VO), a
group of users pursuing common goals (Foster et al.
01). This requires reasoning about individual user’s
choices in light of other user’s choices, such as
possible common jobs that could be included across
workflows and executed only once. In addition,
there are many policies that limit user’s access to
resources, and that should be taken into account in
order to accommodate as many users as possible
while they are contending for limited resources.

5. Reliability of execution: In today’s Grid
framework, when the execution of a job fails the job
is resubmitted for execution on the same resources.
Better recovery mechanisms would be desirable that
take into account the dynamic situation of the
environment, including assignment of alternative
resources and components. Moreover, if any job
fails repeatedly the system should learn and
incorporate this knowledge in future situations.

While addressing the first three points would enable wider
accessibility of the Grid to users, the latter two simply
cannot be handled by individual users and will likely need
to be addressed at the architecture level.

Our approach is twofold. First, we use declarative
representations of knowledge involved in each choice of
the workflow generation process. This includes
knowledge about how application components work,
characteristics and availability of files, capabilities of the
resources available, access control policies, etc. Second,
this knowledge is uniformly available to the system at any
point during workflow generation. This allows the system
to make decisions and assignments in a flexible manner
that

• takes into account previous and future choices,
searching for a low-cost workflow configuration
that satisfies the requirements from the user,

• is feasible in the given execution environment, and
• can adapt to changes in the overall system state.

Figure 1 illustrates our approach. Users provide high level
specifications of desired results, as well as constraints on
the components and resources to be used. These requests
and preferences are represented in the knowledge base.
The Grid environment contains middleware to find
components that can generate desired results, the input
data that they require, to find replicas of component files in
specific locations, to match component requirements with
resources available, etc. The knowledge currently used by
Grid middleware (resource descriptions, metadata catalogs
to describe file contents, user access rights and use
policies, etc) would also be incorporated in the knowledge
base. The system would generate workflows that have
executable portions and partially specified portions, and

iteratively add details to the workflow based on the
execution of the initial portions of it and the current state
of the execution environment.

Much knowledge concerning descriptions of components,
resources and the system’s state is available from a variety
of Grid middleware, as we describe in the next section.
However, one must be an experienced Grid user to run
jobs on the Grid, which means that much additional
knowledge needs to be represented about what terms mean
and how they related to one another. For example, an
application component may be available in a file where it
has been compiled for MPI. MPI is a Message Passing
Interface, which means that the source includes calls to
MPI libraries that will need to be available in the host
computer where the code is to be run. Even a simple piece
of Java code implies requirements in the execution host,
namely that the host can run JVM (Java Virtual Machine).

Our contribution is to organize this knowledge and reason
about it within a uniform framework.

Overview of the Grid environment

Grid environments, such as Globus (Globus 02), include
middleware services that enable users to obtain
information about the resources available, component
software, data files, and the execution environment. This
section describes several of these services, which we have
used as sources of knowledge for our system. More details
can be found in (Deelman et al 03a; Deelman et al 03b).

Resource
locator

Replica
location

Component
and data catalog

Desired contents
of file

Physical file
names &
locations

Computing and
memory resources

Resource
requirements

Logical file
names

Job
scheduling

Execution
monitoring

Grid

User access
rights

Policies of
resource use

Resource
descriptions

Metadata
file descriptions

fi fn

c1
f1

f2

f4

High - level specs of desired
results (fn) and intermediate
data products

Preferences and
constraints on
component/file and
resource selection

Knowledge base
descriptions

and heuristics

Intelligent Workflow Generation Intelligent Workflow Generation

Component
selection

Resource
reasoning Policies

Grid execution environment

c3
f3

c2 c4
f5

fnfi

Partially specified workflow

Resource
locator

Replica
location

Component
and data catalog

Desired contents
of file

Physical file
names &
locations

Computing and
memory resources

Resource
requirements

Logical file
names

Job
scheduling

Execution
monitoring

Grid

User access
rights

Policies of
resource use

Resource
descriptions

Metadata
file descriptions

fi fn

c1
f1

f2

f4

High - level specs of desired
results (fn) and intermediate
data products

Preferences and
constraints on
component/file and
resource selection

Knowledge base
descriptions

and heuristics

Intelligent Workflow Generation Intelligent Workflow Generation

Component
selection

Resource
reasoning Policies

Grid execution environment

c3
f3

c2 c4
f5

fnfi

Partially specified workflow

Figure 1: Application development in the Grid Environment.

I
n

te
r
fe

ro
m

e
te

r

raw channelsraw channels

Single Frame

Short
Fourier
Transform

Store

Hz

Time

Hz

Time

Time-frequency
Image

Find Candidate e
D

Extract
frequency
range

Construct
image

30 minutesI
n

te
r
fe

ro
m

e
te

r
I
n

te
r
fe

ro
m

e
te

r

raw channelsraw channels

Single Frame

raw channelsraw channels

Single Frame

Short
Fourier
Transform

Store

Hz

Time

Hz

Time

Time-frequency
Image

Find Candidate e
D

Extract
frequency
range

Construct
image

Store

Hz

Time

Hz

Time

Time-frequency
Image

Find Candidate e
D

Extract
frequency
range

Construct
image

30 minutes

Figure 2: The path of computations required for a pulsar
search.

In Grid environments, an application component (e.g., a
Fast Fourier Transform or FFT) can be implemented in
different source files, each compiled to run in a different
type of target architecture. Exact replicas of the executable
file can be stored in many locations, which helps reduce
execution time. Data files can also be replicated in various
locations. Each file has a description of its contents in
terms of application-specific metadata. A distinction is
made between “logical” file descriptions, which uniquely
identify the application component or data, and “physical”
file descriptions, which in addition uniquely specify the
location and name of a specific file. The Metadata
Catalog Service (MCS) (Chervenak et al. 02b) responds to
queries based on application-specific metadata and returns
the logical names of files containing the required data, if
they already exist. Given a logical file name that uniquely
identifies a file without specifying a location, the Replica
Location Service (RLS) (Chervenak et al. 02a) can be used
to find physical locations for the file on the Grid.

The Grid execution environment includes computing and
storage resources with diverse capabilities. A specific
application may require (possibly indicated in its metadata
description) a certain type of resource for execution, for
example the existence of certain number of nodes to
efficiently parallelize its execution. Executing applications
with minimal overhead may require specifying which of
the job queues available in the host is more appropriate.
The Monitoring and Discovery service (MDS) (Czajkowski
et al 01) allows the discovery and monitoring of resources
on the Grid. Resource matchmakers find resources
appropriate to the requirements of application components.

Jobs that are completely specified for execution are sent to
schedulers that manage the resources and monitor
execution progress. Condor-G and DAGMan (Frey et al.
01) can be used to request a task to be executed on a
resource. Condor-G adds an individual task to a resource’s
queue, while DAGMan can manage the execution of a
partially-ordered workflow by waiting for a task’s parents
to be completed before scheduling a task.

Given that the planning system decides for the user where
to generate the data and what software and input files to
use, it is very important to provide the user and others
accessing this derived data with its provenance
information, or how the data arrived at its current form. To
achieve this, we have integrated our system with the
Chimera Virtual Data System (Annis et al. 02). Our system
generates a Virtual Data Language description of the
products produced in the workflow. Chimera uses this
description to populate its database with the relevant
provenance information.

Scenario: LIGO pulsar search

Our techniques are general, but we have applied them in
the context of the Laser Interferometer Gravitational Wave

Observatory (LIGO), and we use this application to
illustrate the work. We have focused on a specific LIGO
problem: pulsar search, shown in Figure 2, where Grid
resources are required to search for evidence of
gravitational waves possibly emitted by pulsars. The data
needed to conduct the search is a long sequence (~4
months, 2x1011 points) of a single channel—the
gravitational wave strain channel observed at the LIGO
instrument. The output from the observatory is in small
segments of many channels that are stacked to make a
large frequency-time image, perhaps 4x105 on each side.
The pulsar search looks for coherent signals in this image.

The pulsar search is both computation and data intensive
and requires more resources than those available within the
LIGO Scientific Collaboration. In order to take advantage
of the Grid resources, LIGO’s existing analysis tools were
integrated into the Grid environment. The pulsar search
conducted at SC 2002 used LIGO’s data collected during
the first scientific run of the instrument and targeted a set
of 1000 locations of known pulsars as well as random
locations in the sky. The results of the analysis were made
available to LIGO scientists through the Grid.

Modeling the task as a planning problem
The problem of assigning a set of coordinated tasks in a
workflow and allocating the tasks to available resources is
formulated as an AI planning problem as follows. Each
application component that may take part in the workflow
is modeled as a planning operator. The effects and
preconditions of the operators reflect two sources of
information: data dependencies between the program
inputs and outputs, and resource constraints on the
programs, both hardware and software required to run
them.

The planner imposes a partial order on the tasks that is
sufficient for execution because it models their input and
output data dependencies: if the prerequisites of a task are
completed before the task is scheduled, then the
information required to run the associated program will be
available. Transferring files across the network is also
modeled with a planning operator, so any data movement
required is accounted for. The data dependencies between
tasks are modeled both in terms of metadata descriptions of
the information and in terms of files used to represent the
data in the system. Metadata descriptions, for example a
first-order logic predicate that denotes the result of a pulsar
search in a fixed point in the sky across a fixed range of
frequencies and at a fixed time, allow the user to specify
requests for information without specific knowledge of
programs or file systems, with the planner filling in the
details of the request. Since the operators also model the
files that are created and used by a program, the planner
knows how the information is accessed and stored. It can
then reason about how tasks can share information, and
plan for moving information about the network. The
planner’s representation of information and files is kept up
to date with the state of the Grid, so that its plans are both
efficient and directly executable, as we describe below.

 The planning operators also model constraints on the
resources required to perform the desired operations.
Hardware constraints may include a particular machine
type, minimum physical memory or hard disk space
available, or the presence of a certain number of nodes in a
distributed-memory cluster. Software constraints may
include the operating system and version, the presence of
scheduling software on the host machine and the presence
of support environments, for example to run Java. In our
work on the LIGO scenario, it was sufficient to model
requirements on the scheduling software present, because
of the close relationship between the software and the
hardware configurations of the machines involved. More
recently, we have described different hardware
requirements on operators using the CIM model (CIM, 02).
The initial state given as input to the planner captures
information from several sources:
1. Hardware resources available to the user described using
the CIM ontology, and estimates of bandwidths between
the resources.
2. Relevant data files that have already been created and
their locations.
Our aim is for this information to be extracted
automatically. At present, some is automatically extracted
and some is hand-coded. We give further details below.
The goal given to the planner usually represents a meta-
data request for information and a location on the network
where the data should be available. If there is a preference,
the goals can also be used to specify programs or host
machines to be used, for intermediate or final steps.
In addition to operators, an initial state and goals, our
implemented workflow planner also uses search control
rules, to help it quickly find good solutions based on
preferences for resources and component operators, and to

help it search the space of all plans more efficiently in
order to find high-quality plans given more search time.
For more details on the planning domain specification and
its implementation using Prodigy (Veloso et al. 95), see
(Blythe et al. 03).
We now describe the implementation of our planning-
based solution in more detail. The use of the planner can
be divided into three phases which we describe below:
preparing the input problem specification for the planner,
practical considerations for using AI planning in this
problem domain, and interpreting the output plan as an
executable workflow.

Integration with the Grid environment
Two modules shown in Figure 3 provide input for the
planner: the Current State Generator, which produces the
initial state description, and the Request Manager, which
produces the goal description from a user request. The
Current State Generator makes use of two tools that have
been independently built for the Grid: the Metadata
Catalog Service and the Replica Location Service.
Given knowledge of which data products already exist and
where they are located, the planner can choose whether to
transfer existing data across the network or re-create it
closer to the point where it is needed. This choice is made
either by search control heuristics or by simulating a
number of plans and picking the one with the best
expected run time.
An important design decision in our current
implementation was whether to encode information about
all possible required data products in the initial state before
planning begins, or allow the planner to query for the
existence of data products while planning. Although the
planner is capable of making the queries, we chose to
gather the information before planning because the
potentially large number of queries about files can then be
combined, reducing bandwidth and the load on the MCS
and RLS. The data products to be queried are decided by
the Current State Generator based on the goal description.
This could be done through a static analysis of the
planning operators, but is currently hard-coded.
Once the file information is retrieved, it is sent to the AI
planner, along with the goal from the Request Manager.
The planner merges this information with a static file
describing available resources to create the final initial
state and goals used for planning. Our aim in the near
future is to use the Globus Monitoring and Discovery
Service to retrieve information about computer hosts,
rather than use a static file, and also to use the Network
Weather Service (Wolski 97) to retrieve timely
information about bandwidth estimates between resources.
We also intend to use a metadata service to retrieve
information about Grid users including their preferences
and their access to resources.
The planning operators are stored separately. We are
currently investigating ways to generate the operators from
metadata and resource information about the application
components.

Current state
generator

MCS

RLS

MDS

Request
manager

AI planner

VDL
generator

Submission
generator

for Condor - G

DAGMan
submission and

monitoring

Chimera Transformation
catalog

Condor-G
scheduler

Intelligent workflow generation
Metadata attributes

Logical file names

Physical file names

User info

DAGMan
files

Resource
description

Figure 3: Architecture of the planning system and its
interactions with other Grid-based services.

Practical issues in using an AI planner

As we have argued, AI planning is an appropriate tool for
constructing workflows because it allows a declarative
representation of workflow components with separate
search regimes. Heuristic control for constructing good
workflows or evenly sampling the set of possible
workflows can also be modeled declaratively. In order to
make the most efficient use of AI planning, it was
necessary to integrate the planner with specialized sub-
solvers that were more efficient for certain sub-problems.
Similar approaches have been taken to integrate AI
planning with scheduling systems (Myers et al. 01).

In this case, a user request for a pulsar search might lead
the planner to schedule up to 400 separate short Fourier
transform (SFT) tasks on the available machines. These
tasks are identical except for their input parameters, are
independent of one another and all need to be completed
before a concatenation task is applied to their results: a
situation sometimes called ‘parameter sweep’. It is more
efficient for the planner to consider the separate instances
of the SFT program running on one host as a single
instance, and use a separate routine to assign the SFT

instances to the available hosts. This routine balances the
workload while taking into account the availability of any
already existing input files on the Grid. For the planner,
reasoning at this slightly higher level of abstraction
required re-formulating the operator for the SFT from one
that models single instances of the program into one that
models multiple instances. This was done by hand but we
plan to automate the process, since this situation is
common.

In the LIGO application, the planner returned the first plan
generated, using local heuristics aimed at generating a plan
with low expected run-time. The planner can also be used
to evaluate all possible plans and return one with the
lowest run-time according to its estimates, or as an anytime
algorithm, searching for better plans and returning the best
found when queried. To make the estimates, a routine is
attached to each operator to estimate its run-time as a
function of its input data and the chosen host. The local
estimates are combined into an estimate for the whole plan
based on the partial order of tasks. In principle the
estimates can also be used with partial plans in order to
perform an A* search for the best plan, but this is not
currently implemented.

Executing the plan on the grid

Once the plan is completed, it is sent to the Request
Manager as a partially-ordered set of tasks. Any tasks that
are combined in the planner, for example the SFT
construction tasks in the LIGO scenario, are represented
separately. The partial order is used to oversee the
execution of the plan as a workflow on the Grid, but two
steps must first be taken to complete the workflow.

The plan includes steps to create any needed data products,
and these will be stored in files on the Grid. Within the
plan, these data products are referred to by their metadata
descriptions, and another set of queries to the Metadata
Catalog Service is made to create the appropriate logical
file names and enter their associated metadata attributes.
These files will be created on the host machines where the
programs are to be run, but some of them may need to be
moved to other storage machines for long-term availability
and registered to services like the Replica Location Service
so they can be found and re-used in future requests, if the
user so chooses. The Request Manager adds the necessary
steps to the workflow to store and register these files.

The completed workflow is then submitted to DAGMan
for execution. DAGMan keeps track of task dependencies,
and schedules each task on the required machine when the
parent tasks have completed.

Experiences with the planner

The planning system described above was shown at the
Super Computing conference SC ’02 in November, where
it was used to create and execute workflows in the pulsar
search domain, using approximately ten machines and
clusters of different architectures and computing and
storage resources at Caltech, the University of Southern
California and the University of Wisconsin, Milwaukee.
During the conference it was used to perform 58 pulsar
searches, scheduling over 330 tasks and over 460 data
transfers, consuming over eleven hours of runtime on high
performance computing resources from several
organizations. Since then the system was used to generate
additional workloads that resulted in 185 pulsar searches,
975 tasks being executed and 1365 data files transferred.
The total runtime was close to 100 hours.
Due to the interest from the physics-based user
community, the demonstrators were asked at the
conference if they could include an alternative algorithm
for the pulsar search task that used different resource
types, routines and support files. Although the authors of
the planning domain were not present, it was possible for
them to define additional planning operators for these
routines and describe the new hosts in the resource file.
The system was then able to create and execute workflows
using either the original or the new algorithm, and could
choose the most appropriate one depending on the
availability of hosts or data products. Our collaborators
from the LIGO project expressed great interest in this work
and we aim for this initial implementation to become the
foundation of a system with which they can perform
production-level analysis.

Related Work

AI planning has been used to compose component
programs for image processing to achieve an overall goal
(Lansky et al. 95, Chien and Mortensen 96). These systems
face similar issues in modeling components for planners,
but do not handle distributed resources on a network, or
attempt to improve plan runtime. McDermott (02) applies
planning to the problem of web service composition,
which shares with this domain the problem of composing
software components in a distributed environment where
many components are not directly under the planner's
control although the work does not address resource
requirements and use. Other projects use knowledge bases
to facilitate the use of the Grid. The MyGrid project
(Wroe et al. 03) uses DAML+OIL (Horrocks 02) and
DAML-S (Ankolekar et al. 01) to describe application
components as semantic web services. These descriptions
are used to support matching and discovery of components
through a description logic reasoner. Our work is
complementary in that it uses the descriptions of the
components to generate end-to-end workflows.

Future work
Our initial steps developing this application have shown
the usefulness of a planning approach to workflow
construction, and of declarative representations of
knowledge uniformly available in the Grid. We have also
identified a number of issues that we will explore in our
future work in this area.
Reasoning about entire workflows allows us to find a
globally optimal solution that may not be possible if we
seek a locally optimal allocation for each component task.
However, a relatively long-term plan may be far from
optimal or unachievable in practice because the
computational environment can change rapidly while the
plan is executed. Scheduling of tasks may simply fail, and
resources may become unavailable or be swamped when
needed, bandwidth conditions may change and new data
may render some later steps pointless.
We intend to incorporate Grid monitoring services in our
framework to continually monitor the environment as the
plan is executed, and repair or recompute the plan if
needed. We will initially exploit the fact that plan creation
in this domain is fast compared with execution, so one can
continually re-plan as the situation changes, and always
schedule the next task from the latest available plan. Other
strategies for plan monitoring, re-planning and reactive
planning are also applicable, as are strategies to predict and
avoid likely sources of failure (Boutilier et al. 98).

Wider uses of knowledge in the Grid

By incorporating more sources of useful knowledge in the
Grid environment and by making use of this knowledge in
more places in the Grid, we plan to further improve both
the accessibility and the robustness of Grid applications.
For example, this work shows how explicit knowledge
about tasks and their purposes and constraints can be used
to construct workflows that are more efficient and reliable.
By making the knowledge about tasks more modular and
declarative, for example using ontologies of resources and
metadata, the process of operator construction and
modification can be made simpler and less error-prone.
Currently, knowledge about user preferences and policies
for access to resources is not explicitly represented in the
Grid, and this information would enable automated
construction of workflows in more general situations and
more general reasoning about the quality of alternative
workflows.
Our goal of an accessible Grid that uses widely available
knowledge and can automate more tasks will only be
successful if users can express a variety of information
about their tasks and can control individual processes
when they want to. Interfaces to help users understand the
current state of workflows that interest them and to
describe their requests, preferences and constraints to the
system are also important to the approach.

Conclusions
Our initial work in applying knowledge-based techniques
to make Grid computing more transparent and accessible
has led to interesting results and an encouraging response
from the user community. In addition to considering the
challenges listed above, we are currently testing the
generality of the approach by developing applications for
high-energy physics and with earthquake simulations for
the Southern California Earthquake Center
(http://www.isi.edu/ikcap/scec-it/). If successful, this
approach will be of significant help in bringing the benefits
of Grid-based computing to a much wider base of users.
Many additional AI techniques will be useful towards this
goal, including scheduling and resource reasoning,
ontologies and description logic reasoning, multi-agent
systems, and reasoning about uncertainty.

Acknowledgments. We gratefully acknowledge helpful
discussions on these topics with our colleagues, including
Ann Chervenak, Jihie Kim, Paul Rosenbloom, Tom Russ
and Hongsuda Tangmunarunkit. We thank Gaurang
Mehta, Gurmeet Singh and Karan Vahi for the
development of the demonstration system. We also thank
the following LIGO scientists for their contribution to the
grid-enabled software: Kent Blackburn, Phil Ehrens Scott
Koranda, Albert Lazzarini, Mary Lei, Ed Maros, Greg
Mendell, Isaac Salzman and Peter Shawhan. This work
was supported by the National Science Foundation under
grants ITR-0086044 (GriPhyN) and EAR-0122464
(SCEC/ITR), and by an internal grant from USC’s
Information Sciences Institute.

References
Ankolekar, A., Burstein, M., Hobbs, J., Lassila, O., Martin, D.,
McIlraith, S., Narayanan, S., Paolucci, M., Payne, T., Sycara, K.,
Zeng, H., DAML-S: Semantic Markup for Web Services,
Proceedings of the International Semantic Web Working
Symposium (ISWWS), 2001.
Annis, J., Zhao, Y., Voeckler, J., Wilde, M., Kent, S. and Foster,
I., Applying Chimera Virtual Data Concepts to Cluster Finding in
the Sloan Sky Survey. in Supercomputing. 2002. Baltimore, MD.
Berners-Lee, T., James Hendler and Ora Lassila. "The Semantic
Web" Scientific American, May 2001.
Blythe, J., Deelman, E., Gil, Y., Kesselman, C., Agarwal, A.,
Mehta, G., Vahi, K., The Role of Planning in Grid Computing, in
Proc. Intl. Conf. on AI Planning and Scheduling, (ICAPS) 2003
Boutilier, C., Dean, T., Hanks, S., Decision-Theoretic Planning:
Structural Assumptions and Computational Leverage, Journal of
Artificial Intelligence Research, 11, 1-94, 1999
CIM, 2002, http://www.dmtf.org/standards/standard_cim.php
Chervenak, A., E. Deelman, I. Foster, L. Guy, W. Hoschek, A.
Iamnitchi, C. Kesselman, P. Kunst, M. Ripenu, B. Schwartzkopf,
H. Stockinger, K. Stockinger, B. Tierney (2002). Giggle: A

Framework for Constructing Scalable Replica Location Services.
in Supercomputing. 2002. Baltimore, MD.
Chervenak, A., Deelman, E., Kesselman, C., Pearlman, L. and
Singh, G., A Metadata Catalog Service for Data Intensive
Applications. 2002, GriPhyN technical report, 2002-11.
Chien, S. A. and H. B. Mortensen, "Automating Image
Processing for Scientific Data Analysis of a Large Image
Database," IEEE Transactions on Pattern Analysis and Machine
Intelligence 18 (8): pp. 854-859, August 1996.
Czajkowski, K., Fitzgerald, S., Foster, I. and Kesselman, C., Grid
Information Services for Distributed Resource Sharing. in 10th
IEEE International Symposium on High Performance Distributed
Computing. 2001: IEEE Press.
Deelman, E., J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi,
K. Blackburn, A. Lazzarini, A. Arbree, R. Cavanaugh and S.
Koranda, "Mapping Abstract Complex Workflows onto Grid
Environments", Journal of Grid Computing, vol. 1, 2003
Deelman, E., et al., From Metadata to Execution on the Grid: The
Pegasus Pulsar Search. 2003, GriPhyN 2003-15.
Foster, I. and C. Kesselman, eds. The Grid: Blueprint for a New
Computing Infrastructure. 1999, Morgan Kaufmann.
Foster, I., C. Kesselman, and S. Tuecke, The Anatomy of the
Grid: Enabling Scalable Virtual Organizations. International
Journal of High Performance Computing Applications, 2001.
15(3): p. 200-222.
Foster, I., C. Kesselman, J. Nick, S. Tuecke. Grid Services for
Distributed System Integration. Computer, 35(6), 2002.
Frey, J., Tannenbaum, T., Foster, I., Livny, M., Tuecke, S.,
Condor-G: A Computation Management Agent for Multi-
Institutional Grids. in 10th International Symposium on High
Performance Distributed Computing. 2001: IEEE Press.
Globus, 2002 www.globus.org
Horrocks, I., DAML+OIL, a Reasonable Web Ontology
Language, Proceedings of EDBT 2002, LNCS 2287, 2-13, 2002
Lansky, A., L. Getoor, M. Friedman, S. Schmidler, N. Short, The
COLLAGE/KHOROS Link: Planning for Image Processing Tasks,
AAAI Spring Symp. on Integrated Planning Applications, 1995
McDermott, D. "Estimated-Regression Planning for Interactions
with Web Services". in Sixth International Conference on
Artificial Intelligence Planning Systems, (AIPS) 2002.
Myers, L. and Smith, S. and Hildum, D. and Jarvis, P. and de
Lacaze, R. Integrating Planning and Scheduling through
Adaptation of Resource Intensity Estimates. Proceedings of the
6th European Conference on Planning (ECP), 2001
Veloso, M., J. Carbonell, A. Perez, D. Borrajo, E. Fink, and J.
Blythe. (1995) Integrating Planning and Learning: The
PRODIGY Architecture. Journal of Theoretical and
Experimental AI, 7(1), 1995.
Waldrop, M. Mitchell, 2003 Grid Computing, in "10 Emerging
Technologies That Will Change the World". MIT Technology
Review, February 2003
Wolski, R., Forecasting Network Performance to Support
Dynamic Scheduling Using the Network Weather Service, in
Proc. 6th IEEE Symp. on High Performance Distributed
Computing. 1997: Portland, Oregon.
Wroe, C., R. Stevens, C. Goble, A. Roberts, and M. Greenwood.
(2003). "A Suite of DAML+OIL ontologies to describe
bioinformatics web services and data". To appear in Journal of
Cooperative Information Science.

